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inconsistency in the tasks used to assess it has clouded our under-
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matory factor analysis revealed that some measures of causal rea-
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causal reasoning and scientific literacy across each age tested.
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currently, and each predicted the other in subsequent years.
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Introduction

Both the educational community (e.g., National Research Council [NRC], 2012) and acadefmic com-
munity (Callanan et al., 2020; Gopnik, 2012; Legare, 2014; Sobel, Erb, Tassin, & Weisberg, 2017) argue
that causal reasoning is fundamental to scientific literacy. Many of the science-related questions intro-
duced to children in early educational contexts are aimed at understanding causal relations, processes,
and transformations (e.g., why ice melts or plants die; Bulunuz, 2013; Mantzicopoulos, Patrick, &
Samarapungavan, 2013). Moreover, cause–effect understanding is foundational to experimentation
because it depends on manipulating potential causes and observing outcomes to draw inferences
about mechanisms of effect (Dunbar & Klahr, 2012). Indeed, ‘‘cause and effect” has been identified
as a key ‘‘cross-cutting concept” fundamental to both the disciplinary core ideas and science and engi-
neering practices, components of the Next Generation Science Standards (NRC, 2012, 2013).

The possibility that causal reasoning is foundational to scientific literacy is consistent with evi-
dence that this capacity emerges long before children enter school and are formally exposed to science
(for reviews, see Gopnik & Wellman, 2012; Muentener & Bonawitz, 2017; Sobel & Legare, 2014). For
example, young children—and even infants—can learn cause–effect relations by tracking covariation
among events (Gopnik, Sobel, Schulz, & Glymour, 2001; Gweon & Schulz, 2011; Schulz & Gopnik,
2004; Schulz, Gopnik, & Glymour, 2007; Sobel & Kirkham, 2006, 2007). Although covariation does
not alone indicate causation, young children behave in accordance with this inference. For example,
they generate novel interventions to stop an event (Gopnik et al., 2001) and use indirect evidence
to infer causality (Sobel, Tenenbaum, & Gopnik, 2004). Although developmental changes are not often
reported (e.g., Gopnik & Schulz, 2004; Gopnik et al., 2001; Kushnir & Gopnik, 2005), children’s capacity
to draw inferences about unknown or indeterminate causal relations in more complex versions of
these tasks improves throughout early childhood (Sobel et al., 2004, 2017).

Young children are not just passive observers of event covariations. When the data are insufficient
to determine the causal structure of a system, they actively explore in search of disambiguating infor-
mation (for reviews, see Gopnik & Wellman, 2012; Muentener & Bonawitz, 2017). Gweon and Schulz
(2008), for example, found that 4- and 5-year-olds’ play behavior was more variable and exploratory
after observing confounded evidence regarding the cause of a novel outcome compared with when
they observed unconfounded evidence. Further studies have revealed that children’s heightened
exploration is not wholly random, incorporating informative interventions consistent with a nascent
understanding of basic principles of experimentation (Cook, Goodman, & Schulz, 2011; Lapidow &
Walker, 2020; Legare, 2012; Legare, Gelman, & Wellman, 2010).

The evidence reviewed so far regarding precocious causal reasoning skills has focused on tasks that
require little to no mechanistic knowledge or understanding. Although this measurement approach
can be viewed as advantageous in terms of the specificity of response, it might not reflect the full com-
plexity of causal reasoning. Other work shows that conceptual knowledge of causal mechanisms, func-
tions, and viable transformations emerges in infancy and plays a critical role in early causal reasoning
(Callanan et al., 2020; Das Gupta & Bryant, 1989; Gelman, Bullock, & Meck, 1980; Legare, 2012; Legare
& Lombrozo, 2014). Legare & Lombrozo, 2014, for example, demonstrated that 3- to 5-year-old chil-
dren are capable of acquiring new mechanistic understanding after brief exposure to novel systems,
especially when encouraged to explain verbally how those systems work prior to exploration. More-
over, conceptual knowledge of this nature appears to constrain the hypothesis space and enable chil-
dren to align their exploratory interventions with the metamechanisms and goals most relevant to
specific domains (Kominsky, Zamm, & Keil, 2018; Legare, Wellman, & Gelman, 2009; Waldmann &
Hagmayer, 2013).

Children’s reliance on conceptual knowledge of causal mechanisms is particularly evident in the
context of reasoning about transformations. For example, after seeing pictures of an intact cup (begin-
ning state) and a broken cup (end state), 3-year-old children can correctly identify a hammer from
among several alternatives as the most likely cause (Gelman et al., 1980). By 4 years of age, children
expand this capability to more complex inferences that require taking into consideration multiple
2
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transformations (e.g., a recently broken cup that then also becomes wet) and/or less canonical state
changes (e.g., a broken flowerpot that is fixed to be whole again) (Das Gupta & Bryant, 1989).

Children also bring their conceptual knowledge to bear when reasoning counterfactually about
chains of events. Specifically, when reasoning about how events would have unfolded if things had
happened differently in the past (i.e., counterfactual reasoning), children must draw on their knowl-
edge of how those events are causally dependent (Gopnik & Schulz, 2007; Harris, German, & Mills,
1996; Lewis, 1973; Mackie, 1974; Pearl, 2000). In their foundational study of children’s counterfactual
reasoning capabilities, Harris et al. (1996) told 3- to 5-year-olds a story about a character who left her
muddy shoes on when entering the kitchen. Even some of the youngest children tested were able to
specify that the floor would not have been dirty if the character had taken off her muddy shoes.
Although children’s competence in reasoning counterfactually about simple scenarios solidifies by
4 years of age (German & Nichols, 2003; Guajardo & Turley-Ames, 2004; Riggs, Peterson, Robinson,
& Mitchell, 1998), success in more complex tasks requiring consideration of more than one causally
relevant factor is slower to achieve (Rafetseder, Renate, & Perner, 2010; Rafetseder, Schwitalla, &
Perner, 2013).

In the current study, we asked how causal reasoning skills like these relate to emergent scientific
literacy. Scientific literacy has been generally characterized as encompassing (a) a core understanding
of the nature of science, (b) skills and knowledge regarding scientific practice, and (c) conceptual
understanding of key scientific ideas (Jenkins, 1994). These components are reflected in the three
key dimensions of current U.S. national standards for science education, namely disciplinary core
ideas, science and engineering practices, and crosscutting concepts (NRC, 2012, 2013). Disciplinary
core ideas include knowledge of specific content domains such as life and physical sciences. Science
and engineering practices include the activities of scientific knowledge acquisition such as asking
questions, planning and carrying out investigations, and analyzing and interpreting data. Lastly, cross-
cutting concepts like understanding cause–effect, patterns, and energy and matter are highlighted as
broadly essential to both the core ideas and practices components of scientific literacy.

Because cause–effect understanding is a crosscutting concept in and of itself, all the measures of
causal reasoning reviewed above might be expected to contribute broadly to scientific literacy. The
specific ways in which each instantiation of causal reasoning contributes, however, might be unique.
For example, tracking covariations might be particularly important for scientific practices like moni-
toring variables during observation and experimentation. Causal inference, in contrast, might be key
to drawing conclusions from those observed data and to building complex networks of conceptual
knowledge central to disciplinary core ideas in science. Counterfactual reasoning might be fundamen-
tal to generating alternative hypotheses to test in the scientific process of experimentation. Indeed,
counterfactual reasoning has been described as closely mirroring the process of experimentation in
that, at its core, it involves mentally manipulating potential causes and considering their effects on
imagined outcomes (see Walker & Nyhout, 2020, for a detailed discussion). Children’s spontaneous
exploration of confounded evidence in ambiguous causal systems can also be viewed as similar to
experimentation. In particular, it could offer opportunities for practicing information-seeking strate-
gies related to the systematic forms of hypothesis testing at the heart of scientific inquiry.

In sum, causal reasoning is theoretically foundational to scientific literacy, and a substantial liter-
ature is consistent with that possibility. However, almost no evidence directly addresses this potential
relation. One challenge to doing so is lack of clarity on how best to characterize and measure early
causal reasoning. As reviewed here, many different tasks have been used to assess this ability in young
children, varying substantially in their procedural designs and cognitive requirements. It is unclear
whether all these tasks reflect a common underlying causal reasoning construct or whether they rep-
resent distinct skills that develop independent of each other. To evaluate the relevance of causal rea-
soning to scientific literacy, it is essential to first establish whether and how these tasks relate to each
other developmentally through early childhood.

In pursuing this preliminary goal in the current study, we built on Bauer & Booth, 2019, who found
that children’s performance on counterfactual reasoning tasks and their performance on causal infer-
ence tasks were related to each other, and to scientific literacy, at 3 years of age, but that tracking
covariation patterns in a ‘‘blicket detector” task was not related to any of these measures. Although
this dissociation is suggestive of divergent causal reasoning constructs, the strength and scope of
3



M. Shavlik, Ö. Köksal, B.F. French et al. Journal of Experimental Child Psychology 224 (2022) 105509
conclusions that could be reached from this work was limited by the narrow age range studied. There-
fore, we adopted a longitudinal lens, following children annually from 3 to 5 years of age, a period dur-
ing which significant developmental changes take place in the key domains of interest.

After laying this groundwork, we were able to turn to our primary objective of exploring relations
between causal reasoning abilities and early scientific literacy. Based on the literature reviewed above,
we hypothesized that causal reasoning skills provide a developmental foundation for subsequent sci-
entific literacy. However, we also considered the possibility of more complex reciprocal effects
whereby children’s scientific knowledge and inquiry skills support performance on causal reasoning
tasks. Cognitive skills were also considered as potential contributors to observed relationships
between these constructs.

Method

Participants

The data for the current study originate from a larger longitudinal study, first described in Booth,
Shavlik, & Haden, 2020. The initial sample included 153 3-year-olds (81 female; Mage = 3.41 years,
SD = 0.26, range = 3.01–3.92). All children were typically developing and understood English ‘‘well”
or ‘‘very well” as reported by parents. The sample was racially, ethnically, and socioeconomically rep-
resentative of the southwestern U.S. metropolitan recruitment area (see Table 1). At the second wave
of data collection, 120 4-year-olds (64 female; Mage = 4.59 years, SD = 0.26, range = 3.66–5.09)
remained in the study, and at the third wave, 112 5-year-olds (61 female; Mage = 5.02 years,
SD = 0.23, range = 5.02–5.92) remained. Throughout the 3 years of assessment, attrition was primarily
due to family relocation or our inability to re-establish contact. Missingness was unrelated to key vari-
ables of interest; Little’s (1988) test was not significant, suggesting that our data were missing com-
pletely at random (MCAR), v2(704) = 758.38, p = .076.

Procedure

Data for this study were collected in a total of nine sessions, three in each age-specific wave. Each
session included three to six tasks that were completed by children in a fixed order over the course of
30 to 60 minutes. In the first session of each wave of data collection, parents also completed (or
updated) a demographic survey. The average time window in which the three sessions were com-
pleted was 4.89 months (SD = 2.53) at 3 years, 1.62 months (SD = 0.79) at 4 years, and 1.35 months
Table 1
Participant demographics (in %) across 3 years of data collection.

3 years
(n = 153)

4 years
(n = 120)

5 years
(n = 112)

Race
White/Caucasian 73.9 74.2 78.4
Black/African American 13.1 12.5 7.2
Asian/Asian American 2.6 1.7 0.9
Mixed/‘‘other” 10.5 11.7 13.5

Ethnicity
Non-Hispanic/Latino 69.9 72.5 68.5
Hispanic/Latino 30.1 27.5 31.5

Maternal education
No more than high school 27.5 20.9 18.0
Technical or associate’s degree 6.5 6.7 6.3
Bachelor’s degree 38.6 44.2 46.8
Master’s degree 18.9 20.0 19.8
Advanced degree 8.5 8.3 9.0
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(SD = 1.15) at 5 years. All but the first session, which was conducted at a local children’s museum, took
place in the laboratory. Sessions were audiovisually recorded for offline coding of participant attention
and responses and for verification of protocol fidelity. Average attention ratings for retained partici-
pants fell between 4 and 5 on a 5-point scale for all measures, indicating generally high engagement.

Measures

Causal reasoning
Five causal reasoning tasks were chosen from a wide array of possibilities based on their potential

relevance to scientific literacy (Table 2). Additional criteria for task selection at each age included the
absence of ceiling or floor effects (as reported in the literature and/or pilot testing) and relatively quick
administration time (commensurate with the attention span of young participants). For measures that
were used at more than one age, the basic structure of the tasks remained constant, but the specific
contents used (i.e., materials and narratives) were revised to minimize potential retest effects. Minor
procedural improvements were also sometimes implemented as described in the task descriptions
below.

Tracking cause–effect associations. This task, modeled after Gopnik et al. (2001), measures children’s
ability to draw correct causal inferences based on patterns of dependent and independent probabili-
ties. Four distinct (‘‘blicket detector”) boxes were individually presented to children for consideration.
After demonstrating a series of events in which one block failed to activate the block, another success-
fully did so, and then both did so together, children were asked to help make the box stop by removing
one of the blocks. To respond correctly, children needed to keep track of the data presented and draw
accurate causal inferences about which block would deactivate the box when removed. Performance
was scored as the proportion of correct choices (out of 4 trials). Because children’s performance on this
task approaches ceiling by 4 years of age, it was administered only at the first (3-year) wave of data
collection.

Resolving confounded evidence. This task, modeled after Gweon and Schulz (2008), assesses children’s
ability to generate interventions that are informative in resolving the structure of ambiguous causal
systems that are similar to, but more complex than, the blicket detectors used in the tracking
cause–effect associations task. The experimenter first demonstrated how two different colored blocks
could be used to activate two different colored lights on a novel apparatus. Possible causal factors
(block color, panel color, and left/right placement within panels) were confounded in this demonstra-
tion, as illustrated in Figure 1. She then said to children, ‘‘Now it’s your turn! You can play with it
however you want!”, and let them play freely for 2 minutes (or less if they stated they were done
early).

This task was scored in terms of how quickly (in seconds) children produced an intervention that
was informative about the causal relation between block placement and light illumination (i.e., places
a block in one of the slots in a way that rules out block color, platform color, or left–right placement as
causal). For example, placing the yellow block in the leftmost hole on the gray side would have clar-
ified whether left–right positioning was causally relevant to illuminating the green light. Lower scores
Table 2
Causal reasoning and scientific literacy measures used at each time point.

Construct Skill 3 years 4 years 5 years

Causal reasoning Tracking cause–effect associations
p

Counterfactual reasoning
p p p

Generating causal inferences
p p p

Causal learning
p p

Resolving confounded evidence
p

Scientific literacy Lens on Science
p p p

Science Learning Assessment
p

5



Fig. 1. Confounded evidence task procedure. (A) The starting state. (B,C) The events children observed in the demonstration
phase, where the yellow block activated the green light and the brown block activated the red light. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.).
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on this task therefore correspond to ‘‘better” performance. If children never produced an informative
test, they were assigned the maximum possible value of 120 seconds (even if they declined to use the
full amount of time available to them). This task had previously been used with children aged 48 to
66 months (Gweon & Schulz, 2008) and therefore could have reasonably been included in our 4-
year-old wave of data collection. However, because we did not become aware of the task until after
that wave had been completed, it was implemented only with the 5-year-olds.

Counterfactual reasoning. This task, modeled after Guajardo and Turley-Ames (2004), requires children
to mentally represent a causal chain of events and how the outcomes would have changed if different
events had happened in the past. Children were presented with four vignettes and were asked to rea-
son counterfactually about each situation. For example, one of the four vignettes in the 3-year-old
wave described getting mud all over the kitchen floor after playing outside and then returning inside
for a drink of water. Children were asked what they could have done differently to avoid getting the
floor muddy (e.g., taking shoes off). Each trial of this task was coded dichotomously; if children pro-
duced one or more counterfactual scenarios, they received a score of 1 for that trial, and if they pro-
duced none, they received a score of 0. Performance was scored as the proportion of trials (out of 4) in
which a counterfactual was produced. This task was administered with different vignettes at each
wave of data collection.

Generating causal inferences. This task, modeled after Das Gupta and Bryant (1989), measures young
children’s ability to draw inferences about the causes of event sequences. Children were shown eight
pairs of photographs depicting physical transformations (e.g., a broken flowerpot next to a whole
flowerpot) and were asked to choose which of four possible instruments (e.g., hammer, light bulb,
paintbrush, glue) was responsible. Performance was scored as the proportion of trials (out of 8)
answered correctly. Although this task was administered at all waves of data collection, developmen-
tal accommodations were made. The 3-year-olds were presented with pictures of relatively familiar
items they might have encountered in daily life (e.g., broom, hairbrush), whereas the 4- and 5-year-
olds were presented with novel items (e.g., strawberry huller) that put greater demands on their abil-
ity to reason broadly about potential mechanisms of effect. To give children a better opportunity to
detect these possible mechanisms, real three-dimensional objects were offered to children to select
among rather than pictures of the objects.

Causal learning. This task, modeled after Legare & Lombrozo, 2014, measures children’s ability to learn
about unfamiliar causal mechanisms. In the learning phase of each of 4 trials, children were first intro-
duced to a causal mechanism. For instance, one of the mechanisms was a fan that turned around when
a handle, connected through gears, was cranked. The experimenter presented the mechanism and
said, ‘‘Look, here is a cool machine. I am going to show you how it works, and then you will get a
chance to try.” The experimenter pointed at the causal parts of the machine and demonstrated how
it worked: ‘‘Here we have a handle and a fan. Watch howwhen I turn the handle, the fan goes around.”
Children were then given a chance to play with the machine for approximately 30 seconds. In the test
6
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phase, the experimenter took the machine away from children’s view and removed a causally critical
part (e.g., a middle gear). The machine was then re-introduced with the piece missing, and children
were asked which of three options would make the machine work again. One option matched the orig-
inal missing piece in overall appearance but was altered in a way that interfered with its functionality,
one differed from the original in appearance but was able to perform the same function, and one dif-
fered in both appearance and functionality. If children hesitated to touch the objects, the experimenter
encouraged them to point to one (see online supplementary material for a list of the mechanisms pre-
sented in each trial together with the corresponding missing pieces). Performance was scored as the
total proportion of trials (out of 4) answered correctly. Because piloting revealed near floor perfor-
mance in 3-year-olds on this task, it was included in only the 4- and 5-year waves of data collection.

Scientific literacy

Few standardized measures of scientific literacy have been developed for the young age range tar-
geted in this study. Among these, even fewer reflect contemporary definitions of scientific literacy that
encompass knowledge of both domain-relevant factual information and inquiry practices. However,
the Lens on Science (Greenfield, 2015), designed for preschoolers, and the Scientific Learning Assess-
ment (Samarapungavan, Mantzicopoulos, Patrick, & French, 2009; Samarapungavan, Patrick, &
Mantzicopoulos, 2011), designed for kindergarteners, are two notable exceptions and therefore were
selected for this investigation. More examples of both measures are available at [link: osf.io/z7cgd].

Lens on science
The Lens on Science (Greenfield, 2015) targets all elements of early scientific literacy as currently

conceived in the Next Generation Science Standards (NRC, 2012, 2013). Specifically, it goes beyond
factual disciplinary knowledge (of earth and space, life, physics and energy, and engineering and tech-
nology) and taps into both scientific practices and crosscutting concepts as defined by the NRC’s
(2012) framework. The test assesses knowledge in the domains of life science (e.g., organisms), phys-
ical science (e.g., object properties), engineering/technology (e.g., tools), and earth/space science (e.g.,
weather) as well as understanding of eight science ‘‘process skills” (e.g., observing, questioning, exper-
imenting). The test is administered individually via a touchscreen tablet with instructions and items
presented auditorily. Children are adaptively presented with 35 to 40 questions (from a bank of hun-
dreds of possibilities) over the course of approximately 15 minutes. Children select their answers by
touching one of the pictured alternatives. For example, one of the life science items shows a picture of
a shark and asks children to point to which of three pictured options (a swimming pool, the ocean, and
a small fish tank) is where the fish lives. The measure yields a continuous item response theory (IRT)
ability score ranging from �3 to 3. A high reliability of .87 and correlation to related measures are
reported by Greenfield (2010). The Lens on Science was presented on a 13.9-inch touchscreen Lenovo
Yoga laptop.

Science learning Assessment
The Science Learning Assessment (SLA) was developed based on theoretical conceptions regarding

science knowledge and learning in kindergarten and is aligned with both state and national standards
for early science education (Samarapungavan, Mantzicopoulos, Patrick, & French, 2009;
Samarapungavan, Patrick, & Mantzicopoulos, 2011). The test was individually administered and con-
tained 30 weighted questions from two subtests. The Scientific Inquiry Processes subtest taps chil-
dren’s understanding of how science is conducted by asking the children to select among three
pictorially and verbally presented answers. For example, children are asked ‘‘Which girl asked a
science question about a frog?” and must choose between pictures of children asking (a) ‘‘What does
this frog eat?”, (b) ‘‘Do you like this frog?”, and (c) ‘‘Can I call this frog Lilly?” The Life Science Concepts
subtest taps children’s knowledge of living things and the physical world using multiple-choice and
free-response formats. For example, children are asked to point to one of three pictures that ‘‘is an
insect” and then are asked how they know. The measure was developed for use with children in
kindergarten and takes approximately 20 minutes to complete. Internal reliability is reported as .79
by Samarapungavan et al. (2011). SLA-Total scores ranged from 0 (all incorrect) to 38 (all correct).
7
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Cognitive skill

The Early Childhood Cognition Battery of the National Institutes of Health Toolbox (NIH-ECCB),
administered on an iPad, includes four adaptive measures of cognitive skill. The Dimensional Change
Card Sort Test (Zelazo, 2006) evaluates cognitive flexibility, or the ability to adjust to new tasks and
demands. The Flanker Inhibitory Control and Attention Test (Zelazo et al., 2013) assesses children’s
inhibitory control of visual attention. The Picture Sequence Memory Test assesses children’s episodic
memory (Dikmen et al., 2014). Finally, the Picture Vocabulary Test (Gershon et al., 2013) measures
receptive vocabulary. Based on performance on these four tasks, NIH Toolbox Early Childhood Com-
posite Scores provide a highly reliable assessment of overall general cognitive functioning in young
children (Bauer & Zelazo, 2014; Weintraub et al., 2013).
Results

Specifying the structure of early causal reasoning

As a first step in our examination of the early developmental structure of causal reasoning, we cal-
culated descriptive statistics and bivariate correlations for our key measures (see Table 3). For the
tasks with multiple measurement time points (i.e., counterfactual reasoning, causal inference, and
causal learning), mean scores generally increased with age, consistent with developmental improve-
ment in skill. In addition, with the exception of the tracking associations task, causal reasoning mea-
sures correlated with each other at each measurement time point and, in many cases, across waves.

To more rigorously examine the structure of early causal reasoning, we next examined these rela-
tions using a longitudinal confirmatory factor analysis (e.g., Schaie, Maitland, Willis, & Intrieri, 1998;
Vaillancourt, Brendgen, Boivin, & Tremblay, 2003). This analysis was completed in Mplus using full
information maximum likelihood estimation to reduce any biases due to missing data (see Table 4).
To accommodate our shift in indicators (see Table 2), we implemented a developmental measurement
model (e.g., Bandalos & Raczynski, 2015; Hancock & Buehl, 2008). The common indicators across time
points allow for longitudinal analysis of the factor structure, as well as mean levels, of causal reasoning
without causing parameter bias (Bandalos & Raczynski, 2015).

Our first model-fitting attempt included all relevant measures of causal reasoning at each of the
three waves of data collection (see Table 2). However, this model would not converge. Therefore,
we proceeded to test an alternative model that omitted some of the indicators. A theoretical distinc-
tion helped to guide this choice; both the blicket detector and confounded evidence tasks are
Table 3
Correlations and descriptive statistics for indicators of causal reasoning across 3, 4, and 5 years.

1 2 3 4 5 6 7 8 9 10

1. CFR3 –
2. INFERENCE3 .29* –
3. TRACKING3 �.15 �.03 –
4. CFR4 .47* .34* �.08 –
5. INFERENCE4 .20* .28* �.01 .34* –
6. LEARN4 .02 .07 .06 .20* .28* –
7. CFR5 .33* .21* �.05 .55* .11 .19 –
8. INFERENCE5 .18 .15 .04 .24* .36* .12 .21* –
9. LEARN5 .15 �.08 .10 .27* .03 �.03 .25* .07 –
10. CONFOUND5 �.14 �.10 .06 �.32* �.22* .15 �.38* �.03 �.09 –
M .34 .56 .64 .64 .69 .28 .73 .68 .52 11.74
SD .32 .24 .31 .34 .20 .22 .28 .18 .24 18.29

Note. CFR = counterfactual reasoning; INFERENCE = causal inference; TRACKING = tracking.
cause–effect relations (blicket detector); LEARN = causal learning; CONFOUND = resolving confounded evidence. The number
following the task abbreviation is the measurement year (3, 4, or 5).

* p <.05.
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Table 4
Percentages of missing data and reasons for missingness.

Wave Task % Missing Top three reasons for missingness (n)a

3 years NIH-ECB
PVT 0.65 Attrition (n = 33)
FLANKER 24.84 Attrition (n = 40), behavior (n = 2), failed training (n = 1)
DCCS 32.68 Attrition (n = 42), behavior (n = 5), failed training (n = 1)
PICSEQ 39.87 Attrition (n = 42), failed training (n = 9), behavior (n = 3)

Causal reasoning
CFR 24.84 Attrition (n = 34), failed training (n = 1)
INF 21.57 Attrition (n = 40), behavior (n = 2), experimenter error (n = 1)
TRACKING 15.69 Attrition (n = 33)

Scientific literacy
LENS 2.61 Attrition (n = 33), behavior (n = 8)

4 years NIH-ECB
PVT 21.57 Attrition (n = 33)
FLANKER 28.10 Attrition (n = 40), behavior (n = 2), failed training (n = 1)
DCCS 31.37 Attrition (n = 42), behavior (n = 5), failed training (n = 1)
PICSEQ 35.29 Attrition (n = 42), failed training (n = 9), behavior (n = 3)

Causal reasoning
CFR 22.88 Attrition (n = 34), failed training (n = 1)
INF 28.10 Attrition (n = 40), behavior (n = 2), experimenter error (n = 1)
LEARN 21.57 Attrition (n = 33)

Scientific literacy
LENS 27.45 Attrition (n = 33), behavior (n = 8)

5 years NIH-ECB
PVT 31.37 Attrition (n = 46), behavior (n = 1), failed training (n = 1)
FLANKER 32.68 Attrition (n = 47), behavior (n = 2), failed training (n = 1)
DCCS 35.95 Attrition (n = 47), behavior (n = 6), failed training (n = 1)
PICSEQ 40.52 Attrition (n = 57), behavior (n = 2), failed training (n = 2)

Causal reasoning
CFR 29.41 Attrition (n = 41), technical (n = 3), behavior (n = 1)
INF 28.10 Attrition (n = 42), behavior (n = 1)
LEARN 40.52 Attrition (n = 57), technical (n = 4), behavior (n = 1)
CNFND 32.03 Attrition (n = 49)

Scientific literacy
LENS 34.64 Attrition (n = 41), behavior (n = 8), technical (n = 4)
SLA 36.60 Attrition (n = 56)

Note. NIH-ECCB = Early Childhood Cognition Battery of National Institutes of Health Toolbox; PVT = Picture Vocabulary Test;
FLANKER = Flanker Inhibitory Control and Attention Test; DCCS = Dimensional Change Card Sort Test; PICSEQ = Pic-
ture Sequence Memory Test; CFR = counterfactual reasoning; INFERENCE = causal inference; TRACKING = tracking cause–effect
relations (blicket detector); LEARN = causal learning; CONFOUND = resolving confounded evidence; LENS = Lens on Science; SLA
= Science Learning Assessment.

a Total N = 153. Attrition within a given wave of data collection was possible given that tasks were administered across
multiple sessions.
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‘‘knowledge-lean”— that is, unlike the other tasks considered (which rely on real-world cause–effect
relations), they employ an arbitrary association between stimulus and response. Their use at just one
of the three time points further set them apart from the other causal reasoning variables considered.
After omitting these two variables, the remaining model included only counterfactual reasoning, cau-
sal inference, and causal learning as indicators of a causal reasoning latent variable.

This model fit the data well, v2(17) = 24.80, p = .09, root mean square error of approximation
(RMSEA) = .06 (90% confidence interval (CI) [.00, .10]), comparative fit index (CFI) = .92, standardized
root mean squared residual (SRMR) =.07. At all three time points, the indicators were statistically sig-
nificant (p <.05; see Table 5 for parameter estimates). The test–retest correlations (i.e., stability coef-
ficients) for the causal reasoning construct all were strong and statistically significant (.84ages3,4,
.92ages4,5, and .75ages3,5, p < .05), with the lowest value not surprisingly being between the most distal
measurement time points at 3 and 5 years of age.
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Table 5
Parameter estimates for the developmental measurement model across time.

Indicator PCage3 Uage3 PCage4 Uage4 PCage5 Uage5

Counterfactual reasoning .625 .610 .892 .204 .656 .570
Causal inference .450 .798 .389 .848 .321 .897
Causal learning .214 .954 .302 .909

Note. PC, pattern coefficient; U, uniqueness. Completely standardized solutions.

Table 6
Developmental measurement model fit indices for invariance.

Model Equality constraints
(over time)

v2 df P RMSEA 90% CI CFI SRMR

LL UL

Configural None 24.80 17 .09 .06 .00 .10 .92 .07
Metric invariance Factor loadings 29.03 20 .08 .06 .00 .10 .91 .08
Scalar invariance Intercepts 69.19 23 <.01 .12 .09 .15 .53 .14
Partial scalar

invariance
CFR and INF intercepts only (LEARN
released)

30.79 22 .10 .05 .00 .09 .91 .08

Residual invariance Error (residual) variances 292.95 28 <.01 .26 .23 .28 .00 1.34

Note. CI = confidence interval; LL = lower level; UL = upper level; CFR = counterfactual reasoning; INF = causal inference; LEARN
= causal learning. To gauge model fit, the following fit indices were used: chi-square statistic (v2), comparative fit index (CFI),
root mean square error of approximation (RMSEA) and corresponding CI, and standardized root mean squared residual (SRMR).
In model fitting, a p value less than .05 for chi-square indicates poor model fit. In addition, a CFI value greater than or equal to
.90, an RMSEA value less than .08 (preferably < .05), and an SRMR value at or below .05 indicate good model fit. Bold indicates
the best-fitting model.
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To examine developmental change in the latent causal reasoning variable, it was necessary to first
establish measurement invariance. In other words, before we can test whether the scores on our latent
variable differ across time, we need to first establish that we measured the latent variable in the same
way across the developmental window of interest. If model invariance is present, invariance of the
latent mean structures can be examined (Hancock, 1997; Little, 1997) by first assessing the invariance
of the measurement intercepts (i.e., a person’s predicted score). If intercepts are invariant, latent mean
differences can be compared accurately. Otherwise, in the presence of noninvariant intercepts,
expected score differences may reflect differences across time on our variable of interest (causal rea-
soning), systematic measurement bias, or a combination of both.

Assessing invariance is accomplished by sequentially placing equality constraints on model param-
eters in a series of model comparisons (see Table 6). Based on the guidelines for strict, strong, and
weak forms of factorial invariance presented by Meredith (1993), we achieved strong measurement
invariance and therefore proceeded with our mean comparisons. Latent mean estimates (i.e., partici-
pants’ average ‘‘causal reasoning” levels) increased from 3 to 4 years of age (z = 15.75, p < .05, d = 1.50)
and from 4 to 5 years of age (z = 9.52, p < .05, d = 1.34). In other words, scores were significantly higher
at later time points, with the greatest change seen from 3 to 4 years.
Testing relations between early causal reasoning and scientific literacy

Recall that our primary objective was to investigate the relation between causal reasoning abilities
and early scientific literacy developmentally through the preschool years. The ideal approach to doing
so would have been to build on this model of the structure of causal reasoning, using latent variable
structural equation modeling (SEM) to add an analogous scientific literacy construct at each measure-
ment time point with paths indicating concurrent and predictive relations between both constructs.
However, given only partial invariance across time points, and because we had only one indicator
of scientific literacy at 3 and 4 years of age (thereby falling short of the recommended three measures
per latent construct), we proceeded with the following alternative modeling strategy.
10



Table 7
Correlations among causal reasoning and scientific literacy composites at each time point.

Causal reasoning Scientific literacya

3 years 4 years 5 years 3 years 4 years 5 years

Causal reasoning 3 years –
4 years .44** –
5 years .31** .49** –

Scientific literacy 3 years .55** .39** .33** –
4 years .46** .52** .47** .68** –
5 years .49** .52** .55** .52** .67** –

Excluded measures TRACKING �.13 �.03 .04 �.05 .11 �.09
CONFOUND �.14 �.19 �.22* �.22* �.18 �.30**

M 0.42 0.52 0.63 0.36 1.57 0.00
SD 0.24 0.19 0.17 1.00 1.00 0.86

Note. TRACKING = tracking cause–effect relations (blicket detector); CONFOUND = resolving confounded evidence. All statistics
in this table are the pooled results from multiply imputed datasets.

a Scientific literacy is a standardized composite score at 5 years but is a single score at 3 and 4 years.
* p <.05.
** p <.01.
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Guided by the results of our confirmatory factor analysis, we calculated composite measures of
causal reasoning at each measurement time point based on the average of the scores of available indi-
cators. Although composites were not required for 3- and 4-year scientific literacy (given that only the
single Lens on Science measure was available), a standardized average of the SLA and Lens on Science
Fig. 2. Cross-lagged panel model for causal reasoning and scientific literacy during the preschool years. CR = causal reasoning
composite measure; SL = scientific literacy; e = error. 3 = score at 3 years of age; 4 = score at 4 years of age; 5 = score at 5 years of
age. For ease of interpretation, all values are fully standardized. Curved, double-headed arrows indicate correlations, whereas
straight arrows indicate regression weights. All ps < .05.
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Table 8
Follow-up regression analyses examining the role of cognitive skill.

Model F(2, 149)* Outcome Predictor Unstandardized Standardized

B SE b t p sra

1 15.51 CR (4 years) (Constant) 0.22 0.19 1.17 .244
COG (3 years) 0.00 0.00 .16 1.51 .132 .14
SL (3 years) 0.06 0.02 .31 2.98 .003 .27

2 21.91 CR (5 years) (Constant) 0.50 0.17 2.97 .003
COG (4 years) 0.00 0.02 .00 0.00 .997 .00
SL (4 years) 0.08 0.02 .47 4.45 <.001 .41

3 37.57 SL (4 years) (Constant) �2.50 0.81 �3.10 .002
COG (3 years) 0.03 0.01 .38 4.14 <.001 .35
CR (3 years) 1.31 0.38 .31 4.44 <.001 .29

4 40.87 SL (5 years) (Constant) �3.47 0.74 �4.70 <.001
COG (4 years) 0.02 0.01 .29 3.17 .002 .28
CR (4 years) 1.91 0.42 .43 4.54 <.001 .41

Note. CR, causal reasoning composite score; SL, scientific literacy composite score; COG, cognitive skill composite score.
a A semipartial correlation (sr) indicates the unique relation between a predictor and the outcome variable. In other words, it is the variance in the outcome explained only by that

predictor (i.e., it does not include variance explained by other predictors, as is the case with zero-order and partial correlations).
* All ps <.001.
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scores was calculated for the 5-year wave. Several of our participants had data for some, but not all, of
the components of these composite variables (see Table 4). Following recommendations by Gottschall,
West, and Enders (2012), we therefore created composite scores based on 100 imputations to take full
advantage of all available item-level information. Correlations between these composite measures are
presented in Table 7.

Using these composite scores, we created a cross-lagged panel model (e.g., Selig & Little, 2012) to
test how the variables related to each other over time (see Figure 2) and to specifically test our
hypothesis that early causal reasoning would predict subsequent scientific literacy. The resulting
model fit the data well, v2(4) = 8.89, p = .064, RMSEA = .089 (90% CI [.000, .170]), CFI = .989, SRMR =
.023. Consistent with our confirmatory factor analysis, causal reasoning at each age predicted causal
reasoning scores for the following year; scores at 3 years predicted levels at 4 years (B = 0.32, SE = 0.07,
p < .001), and levels at 4 years predicted those at 5 years (B = 0.32, SE = 0.07, p < .001). Similarly, sci-
entific literacy at each age predicted scores for the following year, with scientific literacy at 3 years
predicting levels at 4 years (B = 0.59, SE = 0.06, p < .001), which in turn predicted levels at 5 years
(B = 0.51, SE = 0.05, p < .001).

Moreover, and of greatest relevance to our core hypothesis, children’s causal reasoning skill pre-
dicted subsequent scientific literacy. Causal reasoning at 3 years predicted scientific literacy at 4 years
(B = 0.65, SE = 0.29, p = .027), and causal reasoning at 4 years predicted scientific literacy at 5 years
(B = 1.07, SE = 0.27, p < .001). The reciprocal relation was also evident, with scientific literacy reliably
predicting subsequent causal reasoning. Scientific literacy at 3 years predicted causal reasoning at
4 years (B = 0.04, SE = 0.02, p = .022), and scientific literacy at 4 years predicted causal reasoning at
5 years (B = 0.05, SE = 0.01, p < .001). See Fig. 2 for standardized parameter estimates.
Controlling for broad cognitive skills

To rule out the possibility that the observed cross-lagged relationships between causal reasoning
and scientific literacy might be spurious due to their common reliance on broad cognitive skills, we
ran follow-up regression analyses including the NIH-ECCB as an additional predictor. All four relations
between causal reasoning and scientific literacy held with semipartial (part) correlations, revealing
that the hypothesized predictor independently accounted for unique variance in the outcome variable
of interest over and above cognitive skill (see Table 8).
Discussion

We began this work with the primary goal of furthering our knowledge of how early causal reason-
ing skills intersect with emergent scientific literacy. As a preliminary step toward this goal, we first
examined the structure of causal reasoning across frequently studied tasks in young children. A lon-
gitudinal confirmatory factor analysis revealed that some of our measures of causal reasoning (causal
inference, counterfactual reasoning, and causal learning) were strong indicators of a common factor
(i.e., causal reasoning) at each age tested. Moreover, this structure was stable across the early child-
hood years. Children with higher causal reasoning ability relative to their peers at 3 years of age were
also likely to have relatively high causal reasoning ability at 4 and 5 years.

Two of our measures, however, did not fit well into this final model. The first of these, tracking
cause–effect associations (measured at 3 years only), failed to correlate with any other contempora-
neous measure (Bauer & Booth, 2019) or subsequent measure of causal reasoning (see Table 3). The
second task, resolving confounded evidence, was measured at 5 years only. Although performance
on this task correlated with causal inferencing at 4 years and counterfactual reasoning at 4 and 5 years,
adding it to the model resulted in worse fit. One notable difference between the measures that coa-
lesced in the model and those that did not is their reliance on understanding meaningful causal mech-
anisms (see Bauer & Booth, 2019; Tolmie, Ghazali, & Morris, 2016). Specifically, generating causal
inferences, counterfactual reasoning, and learning causal mechanisms all require children to under-
stand the precisely sequenced chain of specific actions or events that are responsible for a change
in state. In contrast, the causal mechanisms in the resolving confounded evidence and tracking
13
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associations blicket detector tasks are arbitrary and opaque, requiring no understanding of how they
work. The ‘‘mechanism-free” tasks failed to load onto the same construct as the ‘‘mechanism-depen
dent” tasks, suggesting that these might represent two distinct forms of causal reasoning
(Buchanan & Sobel, 2011). The mechanism-free tracking associations and confounded evidence tasks
also failed to correlate with each other. This might be due in part to the disparate ages at which these
tasks were administered, but it also might be because the tasks do not tap wholly overlapping skills
and therefore do not cohere into a secondary form of causal reasoning. Future research considering a
broader range of measures tapping these different potential forms of causal reasoning will be impor-
tant to confirm whether these are replicable and meaningful dissociations.

Having clarified the structure of causal reasoning in the available data, we proceeded with our pri-
mary goal of evaluating whether and how this construct might be related to the development of sci-
entific literacy. Our cross-lagged panel model revealed relations between causal reasoning and
scientific literacy at each age tested. More important, temporal precedence consistent with our predic-
tion was established, such that causal reasoning predicted scientific literacy in each subsequent year.
To our knowledge, this study provides some of the first evidence for the widely held supposition that
causal reasoning is developmentally foundational to scientific literacy in early childhood (Gopnik,
2012; Legare, 2014; Sobel, Erb, Tassin, & Weisberg, 2017; Tolmie, Ghazali, & Morris, 2016).

Notably, the reciprocal relations also held in our model, such that scientific literacy predicted sub-
sequent causal reasoning at each measurement wave as well. This finding is consistent with a more
complex relation between causal reasoning and scientific literacy in which bidirectional influences
are mutually reinforcing. Given the aforementioned dependence of our measures of causal reasoning
on metamechanistic and conceptual knowledge, it is perhaps not surprising that scientific literacy
(which encompasses this type of knowledge) predicts performance on these tasks. It is also possible
that a stronger grasp of scientific inquiry processes facilitates performance on these tasks by helping
to structure cognitive comparison of possible mechanisms of effect. This might be especially true for
counterfactual reasoning given how similar the requisite processes of mental manipulation of poten-
tial causes and evaluation of imagined outcomes are to those involved in experimentation more
broadly speaking (Danovitch, Mills, Duncan, Williams, & Girouard, 2021; Walker & Nyhout, 2020).

These relationships could not be attributed solely to shared reliance of the key constructs of broad
cognitive capacities like executive function and vocabulary. When scores on the NIH-ECCB were con-
sidered as predictors in follow-up regression analyses, all four cross-lagged relations between causal
reasoning and scientific literacy held. Of course, this does not mean that cognitive capacities are irrel-
evant to understanding the development of scientific literacy. Indeed, in three of the four relations
probed, NIH-ECCB scores explained a significant amount of unique variance (see Table 8). And
although our behavioral observations revealed overall high levels of attention, it is difficult to wholly
rule out the possibility that engagement levels contributed to the observed pattern of results. It also
remains possible that other cognitive skills or aspects of conceptual knowledge not tested here con-
tribute in important ways to the development of scientific literacy. For example, theory of mind has
been shown to predict later experimentation skills (Piekny, Grube, & Maehler, 2013), and metacogni-
tion has been highlighted as foundational to scientific thinking (Kuhn, 2011). Further study, perhaps
optimally using neural or other physiological measures, will be necessary to further elucidate these
complex developmental relations.

Although the current findings add considerably to our understanding of intersections between the
development of causal reasoning and scientific literacy, they also highlight several additional direc-
tions in need of further investigation. In particular, much more work is needed to developmentally
specify the structure of causal reasoning. We were limited in the number of tasks that we could
include in this investigation, and replication with a wider range of selections is essential. Extending
the ages studies in both directions will also be of value. A number of tests of infant causal perception
and reasoning have been developed (Luchkina, Sommerville, & Sobel, 2018; Newman, Choi, Wynn, &
Scholl, 2008; Walker & Gopnik, 2014) that might be successfully adapted for use in an individual dif-
ference developmental framework like the one used here. Moreover, tests of more sophisticated sci-
entific inquiry skills can be used with older children that might plausibly act as intermediaries in
bridging early causal reasoning skills with broad standardized measures of scientific literacy. Toward
these goals, we continue to track children enrolled in the current study and have added tasks to
14
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subsequent waves of data collection that more directly assess children’s hypothesis generation, expla-
nation evaluation, and testing strategies (e.g., Koerber & Osterhaus, 2019; McCormack, Bramley,
Frosch, Patrick, & Lagnado, 2016; Mills, Danovitch, Rowles, & Campbell, 2017; Piekny & Maehler,
2013; van Schijndel, Jansen, & Raijmakers, 2018). This will offer the added benefit of more explicitly
connecting this investigation to research documenting the converging development of causal and sci-
entific reasoning (Köksal, Sodian, & Legare, 2021, Köksal-Tuncer & Sodian, 2018; Sodian, 2018) and the
predictors of scientific reasoning in older children (e.g., Mayer, Sodian, Koerber, & Schwippert, 2014;
Osterhaus, Koerber, & Sodian, 2017).

In furthering these investigations, it will be important to not lose sight of the tasks that did not fit
well into the measurement model specified here. The failure of our tracking associations (blicket
detector) task to correlate with other measures of causal reasoning or scientific literacy was unex-
pected in light of the dominance of this type of task in the causal reasoning literature (but see
Bauer & Booth, 2019). Nevertheless, many versions of the blicket detector task have been developed
with varying complexity. We included only the simplest of these in the current investigation, and it
remains to be seen whether more complex versions will align more closely with other causal reason-
ing measures and be similarly predictive of emergent scientific literacy.

Our own data speculatively suggest that more sophisticated mechanism-free tasks might be more
related to scientific development. Specifically, not only did the confounded evidence task correlate
with some of our other measures of causal reasoning at 5 years of age, but it also correlated with sci-
entific literacy at two of three measurement time points (see Table 7). This might be because the con-
founded evidence task not only requires tracking cause-and-effect relations but also engages key
components of the scientific inquiry process, including (a) noticing that a given causal relation is
ambiguous and (b) producing an informative disambiguating intervention (Zimmerman, 2007). More-
over, sensitivity to information gaps has been established as a first step in question-asking behavior
(Ronfard, Zambrana, Hermansen, & Kelemen, 2018), which is a critical medium for acquiring early
science knowledge both in everyday life through parents (e.g., Callanan & Jipson, 2001; Harris &
Koenig, 2006) and in kindergarten science activities (e.g., Samarapungavan et al., 2011). That said,
the measurement characteristics of the confounded evidence task were unique relative to the other
causal reasoning tasks as a result of its reliance on a single continuous record of response time as
opposed to cumulative accuracy across a small number of discrete trials. It is possible that this con-
tributed to its observed pattern of relation to other measures independent of the speculative possibil-
ities outlined above. In any case, clarifying these points will require targeted replications with more
tasks specifically chosen to represent different potential types of causal reasoning and component
skills.

In sum, although relations between early causal reasoning and scientific literacy are clearly com-
plex, the current findings support the view that the former provides a developmental foundation
for the latter. In particular, the three measures of causal reasoning included in our final model all
required reasoning about causal mechanisms. This may be fundamental to representing more complex
scientific phenomena as well as engaging in scientific inquiry to probe various explanations thereof.
This is an important finding because many children, especially those from socioeconomically disad-
vantaged backgrounds, struggle in tasks such as experimentation, interpreting data, and understand-
ing the nature of science (Bustamante, White, & Greenfield, 2016; Curran & Kellogg, 2016; Greenfield
et al., 2009). The few studies that have investigated this longitudinally point to stable and potentially
widening individual differences that have significant impact on success throughout the elementary
and high school years (Byrnes & Miller, 2007; Morgan, Farkas, Hillemeier, & Maczuga, 2016). The cur-
rent evidence provides new insight into a key precursor to scientific literacy. Ideally informed by addi-
tional replications focused more narrowly on at-risk populations, future research might capitalize on
this insight in developing early childhood educational curricula and interventions.

Data availability

More information about this project can be found at osf.io/z7cgd.
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